Research Problem

A robot needs to explain its decision to a human user. Questions: how to explain?

1. request
2. answer

? not according to my KB

Explanations/Info

Previous Work: Assumptions

- Planning models \(\pi \) (robot) and \(\eta \) (human) in PDDL.
- \(\pi \) is a plan wrt. \(\eta \), but not a plan wrt. \(\pi \).
- Consideration of properties of \(\pi \) (optimal plan)
- Robot is aware of \(\pi \).

Previous Work: Solution

- Defining explanation as \((e', e), e' \subseteq \pi \text{ and } e \subseteq \eta \text{ such that } \eta \models e' \cup \neg e' \models a\).
- Developing algorithms for computing explanations.

This Work

- General framework for explainable AI using answer set programming.
- Knowledge bases represented as logic programs and a literal \(q \) in the language of \(\pi \), such that \(\eta \models q \) and \(\pi \models \neg q \).
- Variety of applications: \(\pi \) and \(\eta \) are two variants of a problem that can be solved using ASP
 - Planning
 - Scheduling
 - Diagnosis
 - …

Results

- An operator called conditional update on logic programs
- \(\pi \) and \(\eta \)
- \(I \) is an answer set of \(\pi \) supporting \(q \)
 - \(\subseteq \pi \)
- Defining \(\pi \models \neg \lambda \) such that \(\pi \models \lambda \models q \)
- Algorithms for computing explanations
- Applications in answer set programming

Motivation for ✽

Example 1

Consider

\[
\pi = \{ a \leftarrow \} \quad \eta = \{ a \leftarrow \}
\]

\(\pi \) has a unique answer set \(I_\pi = \{ a \leftarrow \} \).

To explain \(b \) to the human, the robot needs to inform the human that the rule \(a \leftarrow \) exists. So, the update in this case is simply adding the justification to \(\pi \), i.e., \(\pi \models b \). \lambda \ models \(\lambda \) should result in \(\{ a \leftarrow b \} \).

In this case, we do not remove any rule from \(\pi \).

Example 2

Consider

\[
\pi = \{ a \leftarrow \neg b \}
\]

\(\pi \) has two answer sets \(I_\pi = \{ a \leftarrow \} \) and \(I_\eta = \{ b \leftarrow a \} \). Only \(I_\eta \) supports \(b \) and \(b \leftarrow a \) is the justification of \(b \) wrt. \(I_\eta \).

It is easy to see that simply adding \(\lambda \) to \(\pi \) will result in a program with the unique answer set \(\{ a \leftarrow \} \) which does not support \(b \).

So, we should have

\[
\pi \models \lambda \models \{ b \leftarrow \neg a \}
\]

\(\pi \models \lambda \models \{ \} \), should not contain any rule whose head does not belong to \(I_\eta \).

Example 3

\[
\pi = \{ b \leftarrow \neg a \} \quad \eta = \{ c \leftarrow \neg e \}
\]

\(\pi \) has a unique answer set \(I_\eta = \{ b \} \) and the unique justification for \(b \) is \(\pi \).

To remove \(e \leftarrow \neg c \),

\[
\pi \models \lambda \models \{ b \leftarrow \neg a \}
\]

\(\pi \models \lambda \models \{ \} \), results into \(\{ b \leftarrow \neg a \} \).

Conditional Update

Let \(\pi_1 \) and \(\pi_2 \) be two programs. Further, let \(I \) be an answer set of \(\pi_1 \) and \(\lambda \subseteq \pi_1 \). The conditional update of \(\pi_1 \) with respect to \(\lambda \) and \(I \) is the program \(\pi_1 \setminus \lambda \), denoted by \(\pi_1 \setminus \lambda \), where \(\pi_1 \setminus \lambda \) is the collection of rules from \(\pi_1 \) \setminus \lambda \) such that \(\lambda \models \pi_1 \setminus \lambda \) and \(I \models \pi_1 \setminus \lambda \).

If \(\pi_1 \setminus \lambda \) has a unique answer set \(\{ a \leftarrow \} \), then \(\pi_1 \setminus \lambda \models \{ a \leftarrow \} \).

Approach

Explained-Based on Conditional Update

A subprogram \(c \subseteq \pi \) is an explanation for \(q \) from \(\pi \) to \(\eta \), wrt. an answer set \(I \) of \(\pi \) (or an explanation for \(q \) wrt. \(I \)) if \(\pi \models \lambda \models q \).

Computing Explanations

Let \(\pi \) answer set supporting \(q \) of \(\pi \), define \(\Pi(\pi, I) \):

1. \(\Pi(\pi, I) \) contains the constraint \(c \leftarrow \neg q \),
2. for each \(c \in \Pi(\pi, I) \), \(\text{head}(c) \in I \) and \(I \models \text{body}(c) \),
3. \(\text{head}(c) \leftarrow \neg q \) is a rule in \(\Pi(\pi, I) \),
4. \(\text{body}(c) \leftarrow \text{rule of } \Pi(\pi, I) \),
5. \(\text{head}(c) \leftarrow \text{rule of } \Pi(\pi, I) \),
6. \(\text{body}(c) \leftarrow \text{rule of } \Pi(\pi, I) \).

Then \(\Pi(\pi, I) \models \) an explanation for \(q \) wrt. \(I \).

Algorithm Explanation \((\pi_0, \pi, \eta, q)\)

Input: Programs \(\pi_0, \pi, \eta \), atom \(q \)
Output: An explanation \(e \) for \(q \)

If \(\pi_0 \cup \{ \neg q \} \) has no answer set

Return nil

Let \(I \) be an answer set of \(\pi_0 \cup \{ \neg q \} \)

Compute \(\Pi(\pi, I) \)

Compute an answer set \(J \) of \(\Pi(\pi, I) \)

Compute \(e = \{ \text{head}(c) \leftarrow \text{body}(c) \} \)

Return \(\pi_0 \models E \models \pi \models \eta \)

Utility-Based Optimal Utility Explanations

Let \(U_{\pi_1}(\pi_2) \) be the utility of \(\pi_2 \) wrt. \(\pi_1 \).

The utility function is defined by \(U_{\pi_1}(\pi_2) \) as the minimal number of rules in \(\Pi(\pi_1, I) \).

Believability-Preferred Explanations

The believability score of an explanation \(e \) is defined by \(\text{score}(e) = \# \text{answer sets of } \pi \models \pi \models e \text{ where } e \neq \pi \text{ is true} \).

Conclusions

- Define conditional update operator ✽
- Utilize ✽ in explainable AI
- Define preferred explanations
- Propose algorithms for computing explanations